
Complex Analysis: Midterm Exam

Aletta Jacobshal 01, Monday 18 December 2017, 09:00–11:00
Exam duration: 2 hours

Instructions — read carefully before starting
- Write very clearly your full name and student number at the top of the first page of each of your exam

sheets and on the envelope. Do NOT seal the envelope!
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas,

theorems, formulas, etc.) you must explain why the conditions for using such results are satisfied.
- 10 points are “free”. There are 4 questions and the maximum number of points is 100. The exam grade is

the total number of points divided by 10.
- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (20 points)

Consider the function

f(z) = z̄

1− z .

(a) (8 points) Write f(z) in the form f(z) = u(x, y) + iv(x, y) where z = x+ iy.
Solution
We compute

f(z) = z̄

1− z = x− iy
1− x− iy = (x− iy)(1− x+ iy)

(1− x− iy)(1− x+ iy)

= x− x2 + y2

(1− x)2 + y2 + i
−y + 2xy

(1− x)2 + y2 .

We identify

u = x− x2 + y2

(1− x)2 + y2 , v = −y + 2xy
(1− x)2 + y2 .

(b) (12 points) Use the Cauchy-Riemann equations to determine where f(z) is differentiable.
Solution
We check the Cauchy-Riemann equations. We have

∂u

∂x
= 1− 2x+ x2 + 3y2 − 4xy2

((1− x)2 + y2)2 ,

and

∂v

∂y
= −1 + 4x− 5x2 + 2x3 + y2 − 2xy2

((1− x)2 + y2)2 .
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For the first Cauchy-Riemann equation to hold we need

0 = ∂u

∂x
− ∂v

∂y

= 2− 6x+ 6x2 − 2x3 + 2y2 − 2xy2

((1− x)2 + y2)2

= 21− 3x+ 3x2 − x3 + (1− x)y2

((1− x)2 + y2)2

= 2(1− x)3 + (1− x)y2

((1− x)2 + y2)2

= 2(1− x) (1− x)2 + y2

((1− x)2 + y2)2

= 2(1− x)
(1− x)2 + y2 ,

which gives x = 1.
Moreover, we compute

∂u

∂y
= 2y − 6xy + 4x2y

((1− x)2 + y2)2 ,

and

∂v

∂x
= 2xy − 2x2y + 2y3

((1− x)2 + y2)2 .

For the second Cauchy-Riemann equation to hold we need

0 = ∂u

∂y
+ ∂v

∂x

= 2y − 4xy + 2x2y + 2y3

((1− x)2 + y2)2

= 2y1− 2x+ x2 + y2

((1− x)2 + y2)2

= 2y
(1− x)2 + y2 ,

which gives y = 0.
Therefore, we see that the Cauchy-Riemann equations are simultaneously satisfied only at
z = x+ iy = 1. However, the function f(z) is not defined at z = 1. This means that f(z)
is nowhere differentiable.

Question 2 (20 points)

The principal value of arcsin is defined as

Arcsin(z) = −iLog
(
iz +

√
1− z2

)
,

where
√
z denotes the principal value of z1/2 (consider known that: for x > 0,

√
x equals the

real square root; for x < 0,
√
x = i

√
|x|; and that

√
0 = 0).

(a) (10 points) Compute Arcsin(1), Arcsin(i), and Arcsin(2).
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Solution
We first compute

Arcsin(1) = −iLog
(
i+

√
1− 12

)
= −iLog(i)
= −i

(
Log |i|+ iArg(i)

)
= −i

(
Log 1 + i

π

2
)

= π

2 .

Then we compute

Arcsin(i) = −iLog
(
i2 +

√
1− i2

)
= −iLog

(
−1 +

√
2
)
,

and we not need any other computations since for x > 0, the principal value Log x of the
complex logarithm is exactly the real logarithm of x.
Finally,

Arcsin(2) = −iLog
(
2i+

√
1− 22

)
= −iLog

(
2i+

√
3i
)

= −i
(
Log |2i+

√
3i|+ iArg(2i+

√
3i)
)

= −i
(

Log |2 +
√

3|+ i
π

2

)
= π

2 − iLog |2 +
√

3|.

‘
(b) (10 points) Show that the half-line on the complex plane defined by z ∈ R with z > 1 is a

branch cut of Arcsin.
Solution
Alternative 1. The principal value,

√
z, of z1/2 has a branch cut along the negative

real axis and the limits from different sides of the cut are ±i
√
|z|. For z > 1 we have

1− z2 < 0. Therefore, the function
√

1− z2 has a branch cut for z > 1 and the two limits
are ±i

√
z2 − 1. We conclude that Arcsin(z) also has a branch cut for z > 1 and the two

limits are −iLog(iz ± i
√
z2 − 1) (from continuity of Log along the imaginary axis). Note

that the limits are distinct since the two numbers z ±
√
z2 − 1 are distinct (for z > 1) and

Log is one-to-one.
Alternative 2. We consider the limits limh→0± Arcsin(z + ih) for z > 1. We first note
that

lim
h→0±

Log(1− (z + ih)2) = lim
h→0±

Log(1− z2 + h2 − 2izh)

= lim
h→0±

Log |1− z2 + h2 − 2izh|+ i lim
h→0±

Arg(1− z2 + h2 − 2izh)

= Log |1− z2|+ i lim
h→0±

Arg(1− z2 + h2 − 2izh)
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(where we used that |z| is continuous on C and Log is continuous for (real) positive numbers)

= Log |1− z2| ∓ πi

(where we used that as h → 0+ the number 1 − z2 + h2 − 2izh approaches the (real)
negative number 1 − z2 from below the negative semi-axis, while for h → 0− from above
the negative semi-axis).

The function exp(z) is continuous on C, thus

lim
h→0±

√
1− (z + ih)2 = lim

h→0±
exp

(1
2 Log(1− (z + ih)2)

)
= exp

(1
2 lim
h→0±

Log(1− (z + ih)2)
)

= exp
(1

2 Log |1− z2| ∓ iπ2

)
= exp

(
∓iπ2

)
exp

(1
2 Log |1− z2|

)
= ∓i exp

(1
2 Log |1− z2|

)
= ∓i

√
|1− z2|

= ∓i
√
z2 − 1.

Finally, since Log is continuous along the imaginary axis we have

lim
h→0±

Arcsin(z + ih) = −i lim
h→0±

Log(i(z + ih) +
√

1− (z + ih)2)

= −iLog(i lim
h→0±

(z + ih) + lim
h→0±

√
1− (z + ih)2)

= −iLog(iz ∓ i
√
z2 − 1)

= −i
(
Log |z ∓

√
z2 − 1|+ iArg(i(z ∓

√
z2 − 1))

)
= π

2 − iLog |z ∓
√
z2 − 1|.

Since the two limits are different for any z on the half-line z > 1 we conclude that the
half-line is a branch cut for Arcsin.

Question 3 (20 points)

Consider the closed unit disk U = {z ∈ C : |z| ≤ 1}. Show that

max
z∈U
|azn + b| = |a|+ |b|.

Here a, b ∈ C are constant and n is an integer with n ≥ 1.

Solution
The function f(z) = azn + b is analytic on D = {|z| < 1} and continuous on U (actually, f(z)
is analytic and thus continuous on C). Note that U is the union of D and the its boundary.

Page 4 of 7



From the maximum modulus principle we conclude that |f(z)| should attain its maximum
value at the boundary C = {|z| = 1} of D. It is therefore enough to look for such maximum
value on C.
Alternative 1. For z ∈ C we have

|f(z)|2 = |azn + b|2

= |azn + b|2

= (azn + b)(āz̄n + b̄)
= aāznz̄n + bb̄+ ab̄zn + ābz̄n

= |a|2|z|2n + |b|2 + 2 Re(ab̄zn)
= |a|2 + |b|2 + 2 Re(ab̄zn).

Since z ∈ C write z = eit with t ∈ R. Moreover, write a = |a|eiu, b = |b|eiv. Then

|f(eit)|2 = |a|2 + |b|2 + 2 Re(|a||b| exp(i(u− v + nt)))
= |a|2 + |b|2 + 2|a||b| cos(u− v + nt).

Therefore, for z = eit ∈ C, |f(eit)|2 attains the maximum value |a|2 + |b|2 + 2|a||b| = (|a|+ |b|)2

for some z∗ ∈ C (for example, choose z∗ = eit∗ with t∗ = (v − u)/n). Since the (real) function
x2 (for x ≥ 0) is strictly increasing we conclude that |f(eit)| also attains its maximum value on
C at the same z∗ and it equals

|f(z∗)| = |a|+ |b|.

Alternative 2. For z ∈ C we have

|f(z)| ≤ |azn + b| ≤ |azn|+ |b| = |a||z|n + |b| = |a|+ |b|.

This means that if we find a z∗ ∈ C such that |f(z∗)| = |a|+ |b| then that will be the maximum
value of |f(z)| on C. Writing as above a = |a|eiu, b = |b|eiv, we have

|f(z)| = |azn + b|
= ||a|eiuzn + |b|eiv|
= |eiv|||a|ei(u−v)zn + |b||
= ||a|ei(u−v)zn + |b||.

Let

z∗ = ei(v−u)/n ∈ C ⇒ zn∗ = ei(v−u).

Then

|f(z∗)| = ||a|ei(u−v)zn∗ + |b||
= ||a|ei(u−v)ei(v−u) + |b||
= ||a|+ |b||
= |a|+ |b|,

which is exactly what we wanted to show.
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Question 4 (30 points)

(a) (15 points) Compute the value of the integral∫
Γ

ez

(z + 1)(z2 − 4) dz,

where Γ is the closed contour shown in Figure 1.

x

y

1 2 3

i

−i

Γ

Figure 1: Contour Γ for Question 4(a).

Solution
The Cauchy integral formula for z0 = 2 gives that for a function g(z) analytic on and inside
Γ we have ∫

Γ

g(z)
z − 2 dz = 2πig(2).

Choosing

g(z) = ez

(z + 1)(z + 2) ,

we note that it is analytic on and inside Γ so it satisfies the conditions for applying the
formula.
Therefore∫

Γ

ez

(z + 1)(z2 − 4) dz =
∫

Γ

ez

(z + 1)(z + 2)(z − 2) dz =
∫

Γ

g(z)
z − 2 dz = 2πig(2).

We then compute

g(2) = e2

(2 + 1)(2 + 2) = e2

12 .

Finally, ∫
Γ

ez

(z + 1)(z2 − 4) dz = 2πig(2) = e2πi

6 .

(b) (15 points) Compute the value of the integral∫
C

(z̄ + z2 sin z) dz,
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where C is the circle |z − 1| = 1 traversed in the clockwise direction.
Solution
We have ∫

C
(z̄ + z2 sin z) dz =

∫
C
z̄ dz +

∫
C
z2 sin z dz.

The function z2 sin z is entire and therefore its integral along any loop vanishes. Thus we
only need to compute

∫
C z̄ dz.

We parameterize C by z(t) = 1 + e−it, 0 ≤ t ≤ 2π. Then z′(t) = −ie−it and z(t) = 1 + eit.
We have ∫

C
z̄ dz =

∫ 2π

0
z(t)z′(t) dt

= −i
∫ 2π

0
(1 + eit)e−it dt

= −i
∫ 2π

0
e−it dt− i

∫ 2π

0
dt

=
∫ 2π

0
(e−it)′ dt− 2πi

= (e−2πi − 1)− 2πi
= (1− 1)− 2πi
= −2πi.

Finally, ∫
C

(z2 sin z + z̄) dz = 0− 2πi = −2πi.

Page 7 of 7


